Ansys|91国内精品视频|Matlab|91国内精品久久久|R语言培训课程班-91国内精品久久-曙海培训深圳成都南京苏州杭州

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 
  班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
      每個班級的人數限3到5人,互動授課, 保障效果,小班授課。
  上間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開間(周末班/連續班/晚班):2018年3月18日
  實驗設備
    ◆小班教學,教學效果好
       
       ☆注重質量☆邊講邊練

       ☆合格學員免費推薦工作
       ★實驗設備請點擊這兒查看★
  質量保障

       1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
       2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
       3、培訓合格學員可享受免費推薦就業機會。☆合格學員免費頒發相關工程師等資格證書,提升職業資質。專注高端技術培訓15年,端海學員的能力得到大家的認同,受到用人單位的廣泛贊譽,端海的證書受到廣泛認可。

課程大綱
 
  • Day 01
    =====
    Overview of Big Data Business Intelligence for Criminal Intelligence Analysis
  • Case Studies from Law Enforcement - Predictive Policing
    Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
    Emerging technology solutions such as gunshot sensors, surveillance video and social media
    Using Big Data technology to mitigate information overload
    Interfacing Big Data with Legacy data
    Basic understanding of enabling technologies in predictive analytics
    Data Integration & Dashboard visualization
    Fraud management
    Business Rules and Fraud detection
    Threat detection and profiling
    Cost benefit analysis for Big Data implementation
    Introduction to Big Data
  • Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
    MPP (Massively Parallel Processing) architecture
    Data Warehouses – static schema, slowly evolving dataset
    MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
    Hadoop Based Solutions – no conditions on structure of dataset.
    Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
    Apache Spark for stream processing
    Batch- suited for analytical/non-interactive
    Volume : CEP streaming data
    Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
    Less production ready – Storm/S4
    NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
    NoSQL solutions
  • KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
    KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
    KV Store (Hierarchical) - GT.m, Cache
    KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
    KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
    Tuple Store - Gigaspaces, Coord, Apache River
    Object Database - ZopeDB, DB40, Shoal
    Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
    Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
    Varieties of Data: Introduction to Data Cleaning issues in Big Data
  • RDBMS – static structure/schema, does not promote agile, exploratory environment.
    NoSQL – semi structured, enough structure to store data without exact schema before storing data
    Data cleaning issues
    Hadoop
  • When to select Hadoop?
    STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
    SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
    Warehousing data = HUGE effort and static even after implementation
    For variety & volume of data, crunched on commodity hardware – HADOOP
    Commodity H/W needed to create a Hadoop Cluster
    Introduction to Map Reduce /HDFS
  • MapReduce – distribute computing over multiple servers
    HDFS – make data available locally for the computing process (with redundancy)
    Data – can be unstructured/schema-less (unlike RDBMS)
    Developer responsibility to make sense of data
    Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
    =====
    Day 02
    =====
    Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?
  • Hadoop vs. Other NoSQL solutions
    For interactive, random access to data
    Hbase (column oriented database) on top of Hadoop
    Random access to data but restrictions imposed (max 1 PB)
    Not good for ad-hoc analytics, good for logging, counting, time-series
    Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
    Flume – Stream data (e.g. log data) into HDFS
    Big Data Management System
  • Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
    Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
    Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
    In Cloud : Whirr
    Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence
  • Introduction to Machine Learning
    Learning classification techniques
    Bayesian Prediction -- preparing a training file
    Support Vector Machine
    KNN p-Tree Algebra & vertical mining
    Neural Networks
    Big Data large variable problem -- Random forest (RF)
    Big Data Automation problem – Multi-model ensemble RF
    Automation through Soft10-M
    Text analytic tool-Treeminer
    Agile learning
    Agent based learning
    Distributed learning
    Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
    Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis
  • Technology and the investigative process
    Insight analytic
    Visualization analytics
    Structured predictive analytics
    Unstructured predictive analytics
    Threat/fraudstar/vendor profiling
    Recommendation Engine
    Pattern detection
    Rule/Scenario discovery – failure, fraud, optimization
    Root cause discovery
    Sentiment analysis
    CRM analytics
    Network analytics
    Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
    Technology assisted review
    Fraud analytics
    Real Time Analytic
    =====
    Day 03
    =====
    Real Time and Scalable Analytics Over Hadoop
  • Why common analytic algorithms fail in Hadoop/HDFS
    Apache Hama- for Bulk Synchronous distributed computing
    Apache SPARK- for cluster computing and real time analytic
    CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
    KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
    Tools for eDiscovery and Forensics
  • eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
    Predictive coding and Technology Assisted Review (TAR)
    Live demo of vMiner for understanding how TAR enables faster discovery
    Faster indexing through HDFS – Velocity of data
    NLP (Natural Language processing) – open source products and techniques
    eDiscovery in foreign languages -- technology for foreign language processing
    Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification
  • Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
    Network infrastructure / Large datapipe / Response ETL for real time analytic
    Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
    Gathering disparate data for Criminal Intelligence Analysis
  • Using IoT (Internet of Things) as sensors for capturing data
    Using Satellite Imagery for Domestic Surveillance
    Using surveillance and image data for criminal identification
    Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
    Combining automated data retrieval with data obtained from informants, interrogation, and research
    Forecasting criminal activity
    =====
    Day 04
    =====
    Fraud prevention BI from Big Data in Fraud Analytics
  • Basic classification of Fraud Analytics -- rules-based vs predictive analytics
    Supervised vs unsupervised Machine learning for Fraud pattern detection
    Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
    Social Media Analytics -- Intelligence gathering and analysis
  • How Social Media is used by criminals to organize, recruit and plan
    Big Data ETL API for extracting social media data
    Text, image, meta data and video
    Sentiment analysis from social media feed
    Contextual and non-contextual filtering of social media feed
    Social Media Dashboard to integrate diverse social media
    Automated profiling of social media profile
    Live demo of each analytic will be given through Treeminer Tool
    Big Data Analytics in image processing and video feeds
  • Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
    LTFS (Linear Tape File System) and LTO (Linear Tape Open)
    GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
    Fundamentals of image analytics
    Object recognition
    Image segmentation
    Motion tracking
    3-D image reconstruction
    Biometrics, DNA and Next Generation Identification Programs
  • Beyond fingerprinting and facial recognition
    Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
    Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
    Big Data Dashboard for quick accessibility of diverse data and display :
  • Integration of existing application platform with Big Data Dashboard
    Big Data management
    Case Study of Big Data Dashboard: Tableau and Pentaho
    Use Big Data app to push location based services in Govt.
    Tracking system and management
    =====
    Day 05
    =====
    How to justify Big Data BI implementation within an organization:
  • Defining the ROI (Return on Investment) for implementing Big Data
    Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
    Revenue gain from lower database licensing cost
    Revenue gain from location based services
    Cost savings from fraud prevention
    An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
    Step by Step procedure for replacing a legacy data system with a Big Data System
  • Big Data Migration Roadmap
    What critical information is needed before architecting a Big Data system?
    What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
    How to estimate data growth
    Case studies
    Review of Big Data Vendors and review of their products.
  • Accenture
    APTEAN (Formerly CDC Software)
    Cisco Systems
    Cloudera
    Dell
    EMC
    GoodData Corporation
    Guavus
    Hitachi Data Systems
    Hortonworks
    HP
    IBM
    Informatica
    Intel
    Jaspersoft
    Microsoft
    MongoDB (Formerly 10Gen)
    MU Sigma
    Netapp
    Opera Solutions
    Oracle
    Pentaho
    Platfora
    Qliktech
    Quantum
    Rackspace
    Revolution Analytics
    Salesforce
    SAP
    SAS Institute
    Sisense
    Software AG/Terracotta
    Soft10 Automation
    Splunk
    Sqrrl
    Supermicro
    Tableau Software
    Teradata
    Think Big Analytics
    Tidemark Systems
    Treeminer
    VMware (Part of EMC)
    Q/A session
 

-

 

  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
主站蜘蛛池模板: 家居网链网—家居产业互联网价值平台 | 宁波科迈尔工程机械有限公司-履带,底盘 | 实木运动地板价格_运动木地板厂家-欧氏实木运动地板网 | 一体式电磁流量计_分体式电磁流量计_卫生级电磁流量计_卫生型电磁流量计_电池供电电磁流量计_卡箍式电磁流量计_废水电磁流量计_德克森仪表(淮安)有限公司官网 | 河北瑞峰医疗-河北护理床-河北医用病床-河北养老院护理床-河北护理床厂家-河北病床厂家-河北瑞峰医疗 | 南京三维动画制作公司,企业视频制作,视频拍摄,FLASH动画设计,宣传片拍摄,广告片制作 | 送料机-冲床送料机-伺服送料机 - 常州市佳王精密机械有限公司 | 昆明护栏网厂家_隔离栅_围栏网_石笼网「13年生产经验」-云南北辛商贸 | 柔性防水套管_刚性防水套管-河南恒生管道制造有限公司 | 球墨井盖厂家-铸铁井盖批发-雨水篦子生产厂家-安徽含山县林头新华铸造厂 | 易居房产律师网|北京房产律师|房产纠纷律师|房产律师 | 消泡剂_有机硅消泡剂_水处理消泡剂_新万成消泡剂厂家 | 企业旺旺-qy55.com| 無谷轻食官网_沙拉轻食加盟_轻食加盟总部_轻食加盟费用 | 石家庄LED显示屏|石家庄显示屏|河北显示屏升级改造|石家庄科航光电科技有限公司_石家庄科航光电科技有限公司 | 河北安润防腐管业股份有限公司-远程供液管路_远距离供液管路_远程供液系统 | 热电偶_电磁流量计_温度传感器_涡轮流量计_铠装PT100_压力变送器-中瑞能 | 溶气气浮机_一体化净水设备_污水处理设备_mbr一体化污水处理设备-明基环保 | 气体报警器,有毒气体报警器,可燃气体探测器,乙炔气体报警器,可燃气体检漏仪,便携式气体检测仪,气体报警控制器-山东如特安防设备有限公司 | 全不锈钢拉钉|铁开口拉钉|全铝封闭拉钉厂家-凯仕特官网 | 青州市同兴源包装机械有限公司-青州市同兴源包装机械有限公司 | 汽车衡,进口地磅,地磅厂家,无人值守称重系统丨青岛维特沃斯 | 莫非传媒官网-江西知名的网络营销推广服务平台南昌网络公司,专业网络公关,品牌危机处理,网站SEO优化,微信朋友圈广告,网站建设,南昌莫非文化传媒有限公司 | 铁三角话筒-思美音频处理器-艾伦赫赛数字调音台-北京盛世音盟电子科技有限公司 | 喷涂机器人|自动喷涂生产线|自动喷涂设备|自动化生产线-深圳市荣德机器人科技有限公司 | 希希助培是专业的教育信息化全场景服务商,为教育培训机构提供教务管理、招生营销、财务管理、家校互动等 | 湖北高新技术企业认定申报|武汉高企认定代办|武汉项目申报首选 - 湖北创优企科技服务有限公司 | 江西同欣机械制造股份有限公司| 狠狠穞A片一區二區三區-免费网站在线观看人数更新时间-欧洲尺码日本尺码专线不卡顿,国产大尺度禁片未删减版,baomaav | 山东发电机组生产厂家,特种火花塞生产厂家,高压线生产厂家,空气滤芯生产厂家,济南市博盛动力机械有限公司 | 三坐标测量机_海克斯康三坐标_蔡司三坐标_常州三坐标测量服务中心_苏州长南精密技术有限公司 | 碳化钨涂层_碳化钨喷涂_碳化钨焊条_碳化钨合金块-北京耐默 | 石家庄团建公司|石家庄拓展训练|石家庄拓展培训|石家庄公司团建|石家庄拓展公司-石家庄启聚团建公司 | 食品厂净化工程-无尘车间装修改造-净化工程-洁净工程-苏州远盈净化公司 | 排污管道疏通_长沙消防管道/暗管网漏水检测维修_长沙雨水管道疏通就找湖南鸿磊环保工程有限公司 排水PVC管-PVC排污管-给水PVC管-电线PVC管-米阳建材pvc管厂 | 欧美日韩人妻精品一区二区三区_欧美成人精品欧美一级乱黄_亚洲欧美日韩高清一区二区三区_国产一级做a爰片久久毛片_日韩一级视频在线观看播放_精品一区二区三区免费毛片爱_完整观看高清秒播国内外精品资源 | 日本国际高中_上海日本国际高中学校排名_日本国际高中留学课程_上海日语国际高中学校学费-上海工程技术大学国际多语种特色高中课程【官网】 | 专业提供医疗器械,医疗设备,进口国产医疗设备,医疗耗材采购,医疗设备厂家等医疗器械信息-上海聚慕医疗器械有限公司 | 找网页游戏鬼服 高返利鬼服游戏平台 鬼服开服表 - 猫游戏鬼服大全 | 眉山净源居环保科技有限公司,眉山除甲醛公司,眉山甲醛治理,眉山保洁服务,眉山家政保洁,眉山家电维修 - 眉山净源居环保科技有限公司,眉山除甲醛公司,眉山甲醛治理,眉山保洁服务,眉山家政保洁,眉山家电维修 | 立式加工中心_龙门加工中心_卧式加工中心-山东威达重工股份有限公司 |