Ansys|91国内精品视频|Matlab|91国内精品久久久|R语言培训课程班-91国内精品久久-曙海培训深圳成都南京苏州杭州

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Understanding Deep Neural Networks培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上?!浚和瑵髮W(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron

Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines

Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks

Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks

Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
主站蜘蛛池模板: 砂基透水砖滤水率,防滑性试验仪,砂基透水砖落球冲击,抗冲击试验机-献县中正试验仪器销售处 | 深圳蓝枫印刷_画册印刷_彩页印刷_宣传册印刷_包装盒印刷_彩盒印刷厂_不干胶印刷厂 | 锂电池破碎生产线|大型电池粉碎机|锂电池分离设备|电池破碎打粉设备-河南鑫恒岩重工科技有限公司 | 制沙机,反击式破碎机,重锤破碎机,泥石分离机,圆锥破碎机厂家-昆明德鑫机械 | 长春互联网运营值选星广传媒,长春短视频运营,长春新媒体运营,长春互联网运营,长春抖音运营,吉林视频号代运营,吉林快手代运营,短视频推广公司,公众号运营,微博运营,新媒体运营 | 浙江世杰阀门有限公司 | 南京展览公司|南京会展制作|南京展台搭建|南京展厅设计|企业展览馆 | 深圳市金正电器有限公司| 假肢价格-大腿假肢小腿假肢假手指-河南舒捷假肢厂家 | 深圳沃亚游学官网丨国外游学丨国际夏冬令营丨美国游学线路丨出国短期游学丨亲子海外游丨游学咨询: 0755-83843308 | 汽车标签|医疗标签|电子标签|手机电池标签|电脑电池标签|电源标签|耐高温标签|防静电标签|手机出厂膜|手机全裹膜|手机包裹膜|手机卖点膜|热转印标签|遮阳板标签|天势科技|-标签印制专家! | 湖南净声源环保科技有限公司是一家专业从事噪声治理和建筑声学设计生态环境综合治理服务的企业,专业从事株洲电梯隔音治理,湘潭中央空调降噪处理,衡阳邵阳冷却塔噪音治理,岳阳常德大型风机噪声隔音降噪,张家界空压机噪声治理,益阳配电房变压器噪声治理,专业郴州永州工厂企业车间噪声治理,怀化娄底专业机械设备减振降治理,武汉噪音治理隔音降噪公司,孝感噪音治理,立式球磨机的噪声控制,专业隔音降噪公司,、以及各类机械动力设备减振降噪噪声治理的公司,同时为客户提供咨询与解决方案 | 天津止回阀-止回阀报价/哪家好-天津蝶阀/进口阀门/通风蝶阀批发-闸阀阀门/球阀生产厂家-天津凯维斯阀门制造 | 济宁山银煤矿机械有限公司,钻采工具,防爆电器,凿岩机械,风动工具,矿山机械,建筑机械,支护设备,通风防尘,铁路设备,仪器仪表,大型设备,矿用泵,钎具类,消防类,矿车类,配件区类 | 有机肥设备|有机肥生产线|有机肥料生产设备|河南通达重工科技有限公司 | 龙淼环保-旋流-喷淋塔,高温布袋,脉冲布袋-单机-滤筒除尘器,活性炭吸附箱,催化燃烧设备,除尘器配件-沧州龙淼环保设备制造有限公司 | 气体检测仪,多功能气体检测仪,四合一检测仪,氯气检测仪,有机挥发气体检测仪,气体报警器-南京诺邦电子科技有限公司 | 中科先农农业(河北)智能设备有限责任公司 | 松下PLC经销商-松下传感器-放大器-电磁阀-光电开关-金器[东莞均钛]品牌气动元件及工控产品一站式供应商 | 深圳钢成培训专业从事,五轴培训,车铣复合培训,数控车床,CNC数控编程,模具编程 ,钣金机械与模具设计,powermill,mastercam,solidworks,ug,hypermill培训 | 襄阳燃烧器厂家-低氮燃烧器价格-河北五通道燃烧器就找襄阳市胜合燃力设备有限公司一站式服务 | 离子交换树脂_阴离子交换树脂_阳离子交换树脂-中国树脂网 | 连云港机械手厂家_全自动焊接机械手_刀轴焊接机_智能轴类焊接机_连云港建博自动化设备有限公司 | 三亚酒吧KTV会所 专业舞台音响灯光 智能影音 会议音响工程 首选海南东演音响公司 | 污泥处理设备|污泥固化固液分离压泥机压滤机厂家-山东冠诚开山贸易 | 深圳展厅设计_产业园区展馆设计_展馆设计公司_健康产业展馆设计_展厅设计哪家好_华竣国际 | 联智通达_工控一体机_工业触摸一体机_工业一体机_工业触控一体机_POS机主板_工控主板_国产化主板_RK3588主板厂商-联智通达 | 语音芯片_蓝牙芯片_ble数传芯片_蓝牙数传模块厂家_拓达半导体-蓝牙数传芯片模块原厂 | 洒水车|冷藏车|LED广告车|油罐车|道路救援车|垃圾车|程力专用汽车股份有限公司销售九分公司 | 指挥调度|调度系统|应急指挥调度|应急指挥|可视化调度|多媒体指挥调度|融合通信|综合调度|应急指挥系统|IP调度系统-北京瑞光极远数码科技有限公司 | 艺术网 - 大型艺术类权威门户站 艺考培训-中影人教育 【官网】-中国艺考教育的引航者 | 压滤机_板框压滤机_生产厂家陕西华星佳洋装备制造有限公司 | 西安logo设计公司/西安包装设计公司/西安画册设计公司/西安广告公司/西安品牌设计公司/泰勒广告 雾度计-雾度仪-透光率测试仪-3nh品牌雾度仪生产厂家 | 托盘缠绕机|全自动缠绕机|悬臂缠绕机-上海晏陵智能设备有限公司 托辊|滚筒|聚氨酯托辊|缓冲托辊|尼龙托琨|衡水良龙输送机械有限公司 | 输送线-链板输送线-倍速-装配-物流-滚筒输送线-分拣线 | 专业提供医疗器械,医疗设备,进口国产医疗设备,医疗耗材采购,医疗设备厂家等医疗器械信息-上海聚慕医疗器械有限公司 | 盆底肌修复仪器-产后康复脉冲磁训练仪-南京佳澜健康管理有限公司 | 停车场设计|地下停车场规划设计|智能停车位地下车库设计施工装修|深圳创安顺停车库规划设计有限公司 | 宁波华路德|交通信号灯|交通信号机|太阳能信号灯|交通警示灯|交通信号灯厂家 | 喷涂陶瓷涂层_热喷涂陶瓷涂层-北京耐默公司 | 无锡市恒威工业气体有限公司-工业高纯气体_高纯度特种气体 |