Ansys|91国内精品视频|Matlab|91国内精品久久久|R语言培训课程班-91国内精品久久-曙海培训深圳成都南京苏州杭州

課程目錄:為電信服務供應商的智能大數(shù)據(jù)信息業(yè)務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數(shù)據(jù)信息業(yè)務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

主站蜘蛛池模板: 卧式镗铣床,道斯镗铣机床加工中心-江苏道斯数控科技有限公司 | 球场地板_运动场地面_体育设施器材_地坪漆工程_项目承接-大上实业(深圳)有限公司 | 装修工程-钢结构工程-环氧地坪漆-东莞市远鸣装饰工程有限公司 | 济宁市泓世新型建材有限公司,山东ALC墙板,GRC轻质隔墙板,预制化粪池,复合墙板加工厂家 | 数造云-面向3D打印的云制造平台 数控落地镗铣床_数控刨台式镗铣床_数控龙门加工中心-青岛辉腾机械设备有限公司 | 远东齿轮泵|高粘度齿轮泵|三螺杆油泵|沥青保温泵|高粘度稠油泵-远东泵业官网 | 苏州交通设施_道路划线_停车场划线_厂区划线_环氧地坪厂家-推荐【飞扬市政交通设施公司】专注交通设施8年! | 四氟瓶塞-塑料离心机-双联恒温水浴锅-常州天瑞仪器有限公司 | 输送线-链板输送线-倍速-装配-物流-滚筒输送线-分拣线 | 西安木包装箱出口托盘定做价格-抽真空实木包装箱免熏蒸木箱多层板木箱哪家好-模压托盘及白松原木-西安宇森木业 | 宁波刑事辩护律师-建设工程律师-工程款合同律师-喻明辉律师 | 南京叉车|电瓶叉车|电动叉车|电动堆高车|电动搬运车-南京诺嘉机械 | 真空系统,真空泵租赁技术服务-兆德机械(上海)有限公司 | 意大利留学-意大利语培训-马来西亚留学【长青藤海外】 | 湖南长沙癫痫病医院_湖南癫痫病专科医院_湖南治疗癫痫病专业医院_长沙和谐医院有限公司 | 消防改造安装,消防维修检测,消防工程安装,气体灭火施工安装,火灾烟感探测器清洗 | 三原图库 - 设计图片素材打包下载sytuku.com | 盐城市城镇化建设投资集团有限公司[盐城国资企业、盐城国资集团、盐城文化旅游、盐城基础设施、盐城土地开发、盐城粮食收储] | 聚四氟乙烯板,聚乙烯四氟板,防火布,廊坊王氏防火材料有限公司官网 | 活性氧化铝球-活性氧化铝干燥剂厂家价格-3A-5A分子筛-巩义市亿洋水处理材料有限公司 | 上海中医医院_上海名老中医专家门诊_上海徐浦中医医院 | 江苏宇力医疗器械有限公司 | 全自动圆木多片锯_立式圆木多片锯价格_大型圆木多片锯厂家-邢台友创机械制造有限公司 | 三亚酒吧KTV会所 专业舞台音响灯光 智能影音 会议音响工程 首选海南东演音响公司 | 上海消防器材|水雾喷头|水幕喷头|螺旋喷头|雾化喷头|泡沫喷头 - 上海舜丹消防设备有限公司 | 溶气气浮机_一体化净水设备_污水处理设备_mbr一体化污水处理设备-明基环保 | 湖南长沙手术室、实验室、无尘室、洁净室、无尘车间的净化工程装修公司-福临建设 | 深圳五洲中医院_深圳好的中医院_深圳市医保定点医院[官网] | 涡流探伤仪-超声波探伤仪-上海仓信电子科技有限公司 | 水上游乐设备 - 郑州亿浪水上乐园设备有限公司| 真空热处理-渗碳热处理-氮化热处理-[东莞德亿]专业热处理加工厂家 | 吸管包装机_塑料杯包装机_纸杯包装机_吸管挤出机_温州恩博机械有限公司 | 易众拍卖行-事故车拍卖,残值车拍卖,水淹车拍卖,全损车拍卖,修复车拍卖,碰橦车拍卖,瑕疵车拍卖,报废车拍卖,泡水车拍卖,拆车件拍卖,配件拍卖,火烧车拍卖,二手车拍卖专业线上平台 | 检重秤,液化气充装秤,滚筒电子秤,汽车衡厂家|上海越衡实业 | 中商信息网-商务数据网-中文商务数据网| 纸带过滤机,磁性分离器,排屑器-烟台通赫机床辅机有限公司 | 景德镇古窑民俗博览区-国家AAAAA级旅游景区_全国旅游标准化示范景区_国家文化产业示范基地_国家级非物质文化遗产生产性保护示范基地--官方网站 | 油漆颜料砂磨机,油墨水砂磨机,水性涂料砂磨机-常州市奥能达机械设备有限公司 | 机锋网-畅享科技品质生活,尽在机锋网| 上海层傲传动设备有限公司 - 工业皮带,输送带,传动带 | 無谷轻食官网_沙拉轻食加盟_轻食加盟总部_轻食加盟费用 |