Ansys|91国内精品视频|Matlab|91国内精品久久久|R语言培训课程班-91国内精品久久-曙海培训深圳成都南京苏州杭州

課程目錄:Big Data Business Intelligence for Criminal Intelligence Analysis培訓
4401 人關注
(78637/99817)
課程大綱:

         Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 

 

 

=====
Day 01
=====
Overview of Big Data Business Intelligence for Criminal Intelligence Analysis

Case Studies from Law Enforcement - Predictive Policing
Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
Emerging technology solutions such as gunshot sensors, surveillance video and social media
Using Big Data technology to mitigate information overload
Interfacing Big Data with Legacy data
Basic understanding of enabling technologies in predictive analytics
Data Integration & Dashboard visualization
Fraud management
Business Rules and Fraud detection
Threat detection and profiling
Cost benefit analysis for Big Data implementation
Introduction to Big Data

Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
MPP (Massively Parallel Processing) architecture
Data Warehouses – static schema, slowly evolving dataset
MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Apache Spark for stream processing
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issues in Big Data

RDBMS – static structure/schema, does not promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Hadoop

When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS

MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
=====
Day 02
=====
Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?

Hadoop vs. Other NoSQL solutions
For interactive, random access to data
Hbase (column oriented database) on top of Hadoop
Random access to data but restrictions imposed (max 1 PB)
Not good for ad-hoc analytics, good for logging, counting, time-series
Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
Flume – Stream data (e.g. log data) into HDFS
Big Data Management System

Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence

Introduction to Machine Learning
Learning classification techniques
Bayesian Prediction -- preparing a training file
Support Vector Machine
KNN p-Tree Algebra & vertical mining
Neural Networks
Big Data large variable problem -- Random forest (RF)
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
Text analytic tool-Treeminer
Agile learning
Agent based learning
Distributed learning
Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis

Technology and the investigative process
Insight analytic
Visualization analytics
Structured predictive analytics
Unstructured predictive analytics
Threat/fraudstar/vendor profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery – failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytics
Network analytics
Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
Technology assisted review
Fraud analytics
Real Time Analytic
=====
Day 03
=====
Real Time and Scalable Analytics Over Hadoop

Why common analytic algorithms fail in Hadoop/HDFS
Apache Hama- for Bulk Synchronous distributed computing
Apache SPARK- for cluster computing and real time analytic
CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
Tools for eDiscovery and Forensics

eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
Predictive coding and Technology Assisted Review (TAR)
Live demo of vMiner for understanding how TAR enables faster discovery
Faster indexing through HDFS – Velocity of data
NLP (Natural Language processing) – open source products and techniques
eDiscovery in foreign languages -- technology for foreign language processing
Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification

Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
Network infrastructure / Large datapipe / Response ETL for real time analytic
Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
Gathering disparate data for Criminal Intelligence Analysis

Using IoT (Internet of Things) as sensors for capturing data
Using Satellite Imagery for Domestic Surveillance
Using surveillance and image data for criminal identification
Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
Combining automated data retrieval with data obtained from informants, interrogation, and research
Forecasting criminal activity
=====
Day 04
=====
Fraud prevention BI from Big Data in Fraud Analytics

Basic classification of Fraud Analytics -- rules-based vs predictive analytics
Supervised vs unsupervised Machine learning for Fraud pattern detection
Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
Social Media Analytics -- Intelligence gathering and analysis

How Social Media is used by criminals to organize, recruit and plan
Big Data ETL API for extracting social media data
Text, image, meta data and video
Sentiment analysis from social media feed
Contextual and non-contextual filtering of social media feed
Social Media Dashboard to integrate diverse social media
Automated profiling of social media profile
Live demo of each analytic will be given through Treeminer Tool
Big Data Analytics in image processing and video feeds

Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
LTFS (Linear Tape File System) and LTO (Linear Tape Open)
GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
Fundamentals of image analytics
Object recognition
Image segmentation
Motion tracking
3-D image reconstruction
Biometrics, DNA and Next Generation Identification Programs

Beyond fingerprinting and facial recognition
Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
Big Data Dashboard for quick accessibility of diverse data and display :

Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based services in Govt.
Tracking system and management
=====
Day 05
=====
How to justify Big Data BI implementation within an organization:

Defining the ROI (Return on Investment) for implementing Big Data
Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
Revenue gain from lower database licensing cost
Revenue gain from location based services
Cost savings from fraud prevention
An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
Step by Step procedure for replacing a legacy data system with a Big Data System

Big Data Migration Roadmap
What critical information is needed before architecting a Big Data system?
What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
How to estimate data growth
Case studies
Review of Big Data Vendors and review of their products.

Accenture
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
Treeminer
VMware (Part of EMC)
Q/A session

主站蜘蛛池模板: 申江储气罐厂家,储气罐批发价格,储气罐规格-上海申江压力容器有限公司(厂) | 首页--南京俊全科技有限公司,环保监测无人机,大疆无人机,农用无人机,植保无人机,巡检无人机,无人机环境监测仪,消防,无人机,航拍测绘,固定翼无人机,无人机电力巡检,四旋翼无人机 | 物联网空开-智能空气开关-智能断路器-家用接触器-万联电器官网 | 小型生活污水处理设备_MBR膜生物反应器_口腔医院/脱脂污水处理设备_酸洗磷化/喷涂废水处理设备-上海台江环保 | 自动隔油提升设备,消防稳压一体设备,苏州不锈钢消防水箱,污水提升设备厂家,无负压变频供水设备厂家-苏州脉泉供水设备有限公司 | 长春网站优化,网络推广,seo快速排名,1.8元/词/天-同信长春网络公司 | 辽宁华宇设备安装有限公司--朝阳消防安装公司,朝阳机电安装公司,朝阳电力安装公司 | 卫生级自吸泵-不锈钢化工离心泵-上海胜欧泵阀有限公司 | 湖南九农王机电设备有限公司官网 | 温州方圆仪器有限公司 工业自动化|自动化设备 - 温州方圆仪器有限公司 | 湖南实验台-防静电工作台-实验设备厂家-长沙实验室设备有限公司-湖南贝塔实验室设备有限公司 | 上海婺川实业有限公司| 自动超声波清洗机_五金超声波清洗机厂家_超声波模具价格_东莞劲荣自动化 | 净化塔_喷淋塔_脱硫塔_河北宝飞华创玻璃钢制造有限公司-河北宝飞华创玻璃钢制造有限公司 | 生物可降解膜_全降解薄膜_可降解包装膜材料厂家-凯峰降解膜 | 天津止回阀-止回阀报价/哪家好-天津蝶阀/进口阀门/通风蝶阀批发-闸阀阀门/球阀生产厂家-天津凯维斯阀门制造 | 铜陵租车_铜陵租车网_铜陵租车公司_铜陵婚车租赁_铜陵汽车租赁公司-良车汽车租赁 | 山东汇河环保科技集团有限公司,水囊水袋,水罐,油囊,预压水袋,吊重水袋_山东汇河环保科技集团有限公司,水囊水袋,水罐,油囊,预压水袋,吊重水袋 | 商标注册_商标转让交易_专利申请_版权登记_ISO认证服务咨询-世标知识产权 | 截止阀,电动,气动,手动,化工截止阀-上海申弘阀门有限公司 | 上海网站建设-上海网站制作-网站设计-上海做网站公司-SEO优化推广-咏熠软件 | 酒博会丨京酒展丨北京国际酒业博览会| 氧化镁|轻质氧化镁厂家|活性氧化镁价格【不好用免费退换】镁神股份 | 小地磅,钢瓶秤,叉车称,轮椅秤,倒桶秤,畜牧秤,轴重仪,称重模块——上海实干实业有限公司-网站首页 | 首页--南京俊全科技有限公司,环保监测无人机,大疆无人机,农用无人机,植保无人机,巡检无人机,无人机环境监测仪,消防,无人机,航拍测绘,固定翼无人机,无人机电力巡检,四旋翼无人机 | 西安logo设计公司/西安包装设计公司/西安画册设计公司/西安广告公司/西安品牌设计公司/泰勒广告 雾度计-雾度仪-透光率测试仪-3nh品牌雾度仪生产厂家 | 石墨热场|PECVD石墨舟|碳碳框|燃料电池双极板|半导体石墨|光纤用石墨模具|石墨电极加工|石墨制品|上海弘竣新能源材料有限公司 | 履带吊出租_大型吊装设备_履带式起重机-山东腾飞吊装工程有限公司 | 中科迈金节能技术(浙江)有限公司| 景县泉兴永塔业有限公司-广播电视塔、通信塔、电力塔、交通设施、监控杆塔、气象塔、森林防火瞭望塔、避雷塔、烟筒塔、训练塔 | 三菱plc_触摸屏_变频器_欧姆龙plc_普洛菲斯_安川伺服电机-广州凌控 | 压力蒸汽灭菌器_脉动真空灭菌器_环氧乙烷灭菌器_等离子灭菌器_广州市科洋 | 上海国际餐饮博览会|餐饮供应|餐饮服务|餐饮加盟 | 绍兴凯渥人力资源有限公司-劳务派遣,劳务分包,代办公司注册 | 连云港海盛石英科技有限公司 | 泰州光明会计师事务所有限公司-财务业务审计,会计服务业务及资产评估业务的专业服务机构 | 压力蒸汽灭菌器_脉动真空灭菌器_环氧乙烷灭菌器_等离子灭菌器_广州市科洋 | 思达测试|山东思达高科机械设备有限公司| 耀美软瓷施工队-13638350103-专注于软瓷施工勾缝的贴软瓷施工队 - 软瓷,软瓷施工,软瓷勾缝,软瓷怎么施工,软瓷怎么勾缝,贴软瓷,软瓷施工队 | 西安鲁班装饰 - 家庭装修,别墅装修,西安十大装修公司排名 | 南京数控折弯机_安徽数控剪板机_数控开槽机-合肥小型液压折弯机系统批发厂家 |