Ansys|91国内精品视频|Matlab|91国内精品久久久|R语言培训课程班-91国内精品久久-曙海培训深圳成都南京苏州杭州

課程目錄:為電信服務供應商的智能大數據信息業務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數據信息業務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

主站蜘蛛池模板: 泰安兴润建材有限公司,泰安井盖定做,泰安警示桩定做,泰安雨水篦子定做,泰安操场篦子定做,泰安标志牌定做 | 山东国新起重机械有限公司,国新起重,起重设备,起重机械,山东起重机厂家,行车,龙门吊 | 恒升(新乡)食品有限公司 | 暖气片_铜铝复合暖气片_钢制散热器厂家-德克菲勒暖气片 | 钻机配件-岩心管-岩心管接箍-地质套管-煤矿用钻头-河南滨远机械设备有限公司 | 自动封箱机_纸箱封箱机_封箱机厂家-青岛百高包装器材有限公司 | 机械智能停车设备_智能机械式立体停车库_立体车库停车设备租赁_山东科博机械车库 | 面粉加工成套设备|面粉加工设备|面粉加工机械|面粉机组设备-河南成立粮油机械有限公司 | 呼吸家官网|肺功能检测仪生产厂家|国产肺功能仪知名品牌|肺功能检测仪|肺功能测试仪|婴幼儿肺功能仪|弥散残气肺功能仪|肺功能测试系统|广州红象医疗科技有限公司|便携式肺功能仪|大肺功能仪|呼吸康复一体机|儿童肺功能仪|肺活量计|医用简易肺功能仪|呼吸康复系统|肺功能仪|弥散肺功能仪(大肺)|便携式肺功能检测仪|肺康复|呼吸肌力测定肺功能仪|肺功能测定仪|呼吸神经肌肉刺激仪|便携式肺功能 | 拍照机,地铁自助拍证件照机器,校园自助打印机,智能自助复印机 | 青浦区摄像头安装/青浦区无线网络覆盖/青浦区网络调试公司/青浦区IT外包公司/金山区网络维护公司/金山区防火墙调试公司 | 清扫器-聚氨酯清扫器-合金清扫器-四连杆自动纠偏-机械纠偏-锥辊纠偏-衡水涌泉机械科技有限公司 | 上海熙隆光电科技有限公司-半导体激光器,一字线激光器,光纤耦合激光器,拉曼激光器 | 易众拍卖行-事故车拍卖,残值车拍卖,水淹车拍卖,全损车拍卖,修复车拍卖,碰橦车拍卖,瑕疵车拍卖,报废车拍卖,泡水车拍卖,拆车件拍卖,配件拍卖,火烧车拍卖,二手车拍卖专业线上平台 | 内蒙古燕雕机械设备有限公司 | 江西蔬菜配送,南昌蔬菜配送,南昌食堂承包,江西饭堂承包-江西菜篮子农产品发展有限公司 | 轻质隔墙板厂家-加气隔墙板_grc轻质隔墙板_空心实心复合隔墙板_水泥混凝土轻质隔墙板批发价格 | 塑料检查井_双扣聚氯乙烯增强管_双壁波纹管-河南中盈塑料制品有限公司 | 上海汽车音响_上海汽车隔音降噪_上海汽车音响改装店_上海音豪 | 室内模拟高尔夫,射箭馆-北京鹰搏蓝天科技有限公司 | 誉瑞仪器是全球知名检测仪器厂商RAE在华东地区的专业级产品销售及授权维修服务商- | 潍坊沃林机械设备有限公司-牵引式风送果园打药机,悬挂式风送果园喷雾机,自走式果树喷药机,车载式风送远程喷雾机-潍坊沃林机械设备有限公司-牵引式风送果园打药机,悬挂式风送果园喷雾机,自走式果树喷药机,车载式风送远程喷雾机 潍坊网络推广,临沂360推广,东营360推广,枣庄360推广,潍坊网站建设,潍坊网络公司,潍坊360搜索,潍坊APP开发,潍坊360推广,潍坊360代理,潍坊点睛网络科技有限公司 | 专业液压对辊,双齿辊破碎机,沙子烘干机,制砂洗沙设备生产线厂家 - 巩义市吉宏机械 | 银联POS机_银联微信支付宝刷卡POS机_外币POS机_移动POS机办理安装——谷骐科技 | 天津成考网-天津成人高考网 | 原创软文新闻稿-网站SEO文章代写-征文演讲稿代笔-写作阁 | 上海惠涵实业有限公司-德国进口风机,德国Elektror依莱克罗风机 上海画册设计-上海宣传册设计-产品手册设计-企业画册设计公司 | 深圳诚暄软板首页-fpc软板,fpc软性线路板打样生产厂家 | 三禾防爆-专业的防爆电气生产厂家| 苏州拆除公司_太仓拆除公司_常熟拆除公司_昆山拆除公司--苏州伊诺尔拆除工程有限公司 | 洒水车厂家、消防车、污水处理车厂家-程力专用汽车股份有限公司 洒水车|冷藏车|LED广告车|油罐车|道路救援车|垃圾车|程力专用汽车股份有限公司销售九分公司 | 乌鲁木齐万通汽车学校| 南昌利驰科技有限公司| 压力试验机,万能试验机-北京大地华宇仪器设备有限公司 官网 | 全地形消防摩托车_背负式细水雾_全氟己酮灭火装置「斯库尔消防」 | 污水处理设备-污泥脱水设备-纯水净水设备-山东善丰机械科技有限公司 | 商用车之家——观点有态度 热点不缺席 靠谱的商用车门户网站 | 陶瓷靶材_氧化铌靶材_合金靶材_专注河北氧化铌靶材批发-河北东同光电科技有限公司 | 内蒙古碧云食品有限公司| 纸箱包装,济南纸箱,济南包装盒-济南佳琦包装有限公司 | 河北高新技术企业认定,沧州商标注册,沧州9001质量管理体系认证,沧州高新技术企业认定,沧州体系认证,沧州商标续展,沧州版权登记,河北国瑞企业管理咨询有限公司 |